2,6-DIISOPROPYLPHENYLIMINO-THEXYLBORAN: SYNTHESE UND REAKTIONEN

MICHAEL ARMBRECHT und ANTON MELLER*

Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, D-3400 Göttingen (F.R.G.) (Eingegangen den 11. März 1986)

Summary

2,6-Diisopropylphenylimino-thexylborane (III) can be readily prepared from dibromothexylborane and 2,6-diisopropylaniline. While compound III can be stored for prolonged periods, it can nevertheless be applied as a 1,2-dipolar reagent. A comparison of the IR $\nu(BN)$ frequencies with the $\delta(^{11}B)$ NMR data of sterically hindered iminoboranes shows some conformity.

Zusammenfassung

2,6-Diisopropylphenylimino-thexylboran (III) kann einfach aus Dibromthexylboran und 2,6-Diisopropylanilin hergestellt werden. Obwohl III auch längerfristig haltbar ist, geht es ohne Schwierigkeiten 1,2-dipolare Reaktionen ein. Ein Vergleich der $\nu(BN)$ Banden im IR und der $\delta(^{II}B)$ -NMR Daten sterisch gehinderter Iminoborane zeigt eine gewisse Übereinstimmung.

Einleitung

Während erste Versuche zur Stabilisierung von Derivaten des Iminoborans RB \equiv NR' dieses Ziel durch die Ausnützung elektronischer Effekte der Substituenten zu erreichen suchten: $C_6F_5B\equiv$ N C_6H_4 -4-OCH $_3$ [1], zeigten spätere Arbeiten, dass die Isolierung und Stabilisierung monomerer Iminoborane ausschliesslich durch sterische Hinderung durch sperrige Substituenten sowohl am B als auch am N möglich ist. So dimerisiert das erste in Substanz gefasste monomere Iminoboran $C_6F_5B\equiv$ NCMe $_3$ [2] bei Raumtemperatur relativ rasch und die Iminoborane RB \equiv NCMe $_3$ (mit R = Et, Pr, Bu) [3] trimerisieren beim Erwärmen auf Raumtemperatur. Erst Derivate wie TMP-B \equiv NCMe $_3$ (TMP = 2,2,6,6-Tetramethylpiperidinyl) [4], Me $_3$ CB \equiv NCMe $_3$ [5] und Me $_3$ C(Me $_3$ Si)NB \equiv NCMe $_3$ [6] besitzen eine geringere Neigung zur Dimerisierung und zeigen bei Raumtemperatur in Substanz eine Halbwertszeit von Stunden [4] bis mehreren Tagen [5,6], wobei die Tendenz zur Cyclodimerisierung

durch Verdünnen mit Lösungsmitteln stark vermindert wird. Me₃CB≡NSiMe₃ hat in Substanz, zufolge der nur wenig verminderten sterischen Abschirmung bei Raumtemperatur, nur eine Halbwertszeit von etwa 15 Min [7]. Wie sehr die Stabilität von Iminoboranderivaten und auch die Struktur des daraus entstehenden Oligomeren von der Raumerfüllung der Substituenten gesteuert wird, zeigt die Isolierung des ersten Dewarborazins als Trimeres von i-PrB≡NCMe₃ [8] und seines Isomeren [BCMe₃N-i-Pr]₃ [7]. Wird die sterische Hinderung ins Extrem getrieben, entstehen mit (Me₃Si)₃XB≡NSiMe₃ (X = C oder Si) [9] Verbindungen, die monatelang bei Raumtemperatur gelagert werden können und weitgehend chemisch inert sind. Demnach sollte es möglich sein, durch abgestimmte sterische Effekte, monomere Iminoborane in jeweils gezielter Weise kinetisch zu stabilisieren.

Ergebnisse und Diskussion

Eine sterisch anspruchsvolle Gruppe, die unschwer durch Hydroborierung an das Bor gebunden werden kann, ist der 1,1,2,2-Tetramethylethyl-(Thexyl-)-rest. Als Substituenten am N, der einerseits eine gute sterische Abschirmung bringt, andererseits aber noch Raum für Umsetzungen des Thexyliminoborans lässt, haben wir den 2,6-Diisopropylphenylrest gewählt. Ausgehend von Dibromthexylboran (I) wurde durch Umsetzung mit 2,6-Diisopropylanilin, in Gegenwart von Triethylamin, Brom-(2,6-diisopropylphenylamino)thexylboran (II) und daraus, mit lithiiertem 2,2,6,6-Tetramethylpiperidin (TMPLi), das 2,6-Diisopropylphenylamino-thexylboran (III) erhalten (Gl. 1).

$$\begin{array}{c} \text{Me}_2\text{CHC(Me)}_2\text{BBr}_2 & \frac{+\ 2,6\ (i-\text{Pr})_2\text{C}_6\text{H}_3\text{NH}_2\ +\ \text{Et}_3\text{N}}{-\ \text{Et}_3\text{NHBr}} \\ \\ \text{Me}_2\text{CHC(Me)}_2\text{B}=N-C_6\text{H}_3-2,6\ (i-\text{Pr}) & \frac{+\ \text{TMPLi}}{-\ \text{TMP, -LiBr}} & \text{Me}_2\text{CHC(Me)}_2\text{B}\equiv N-C_6\text{H}_3-2,6\ (i-\text{Pr}) & \text{Me}_2\text{CHC(Me)}_2\text{B}=N-C_6\text{H}_3-2,6\ (i-\text{Pr}) & \text{Me}_2\text{CHC(Me)}_2\text{B}=N-C_6\text{H}_3-2,6\ (i-\text{Pr}) & \text{Me}$$

III, ein farbloser Feststoff, ist bei Raumtemperatur in Substanz wochenlang unverändert haltbar und reagiert andererseits aber sowohl mit Protonen-aktiven Verbindungen (H₂O, Me₃CNH₂, Me₃COH) als auch Me₃SiN₃, wie dies von anderen Iminoboranen bekannt ist [5,10,11] (Gl. 2).

TABELLE 1
SPEKTROSKOPISCHE DATEN (NMR: ¹H, ¹³C, ¹¹B, ¹⁴N; MS) DER VERBINDUNGEN I-VII

Ver-	NMR (δ in ppi	$m) (*^3J(H-H) 7 Hz)$	MS m/z	IR			
bin- dung	Zuordnung	¹ H	¹³ C	¹¹ B	M ⁺ /Int. [Basispeak]	v (cm ⁻¹)	
Ī	(CH ₃) ₂ CH (CH ₃) ₂ CB (CH ₃) ₂ CH	0.835(d)* [6H] 0.975(s) [6H] 2.125(h)* [1H]		68.1	FI: $(M^+ - C_3H_7$ = 213)		
II	$(CH_3)_2$ CHCB $(CH_3)_2$ CB $(CH_3)_2$ CHAr $(CH_3)_2$ CHAr $(CH_3)_2$ CHCB $(CH_3)_2$ CHAr NH $(CH_3)_2$ CHAr	0.97 (d)* [6H] 1.08 (s) [6H] 1.17 (d)* [6H] 1.25 (d)* [6H] 2.01 (h)* [1H] 3.18 (h) [2H] 5.9 (br) [1H] 7.05-7.25 [3H]	17.96 21.50 22.88 23.82 34.06 28.58 123.23–145.14 (4 Signale)	43.9	351/40 [84]	ν(NH) 3390	
III	(CH ₃) ₂ CHCB (CH ₃) ₂ CHAr (CH ₃) ₂ CB (CH ₃) ₂ CHCB CB (CH ₃) ₂ CHAr C ₆ H ₃	1.1 (d)* [6H] 1.22 (d)* [12H] 1.27 (s) [6H] 1.55 (h)* [1H] 3.42 (h)* [2H] 6.97-7.17 (br) [3H]	20.58 22.26 24.57 37.18 25.8 28.77 122.05–142.43 (4 Signale)	14.9 266.8 <i>ª</i>	271/18 [201]	ν(¹⁰ BN) 2030 ν(¹¹ BN) 1995	
IV	(CH ₃) ₂ CHCB (CH ₃) ₂ CB (CH ₃) ₂ CHAr (CH ₃) ₂ CHAr (CH ₃) ₂ CHCB (CH ₃) ₂ CHAr (CH ₃) ₂ CHAr OH NH C ₆ H ₃	0.89 (d)* [6H] 1.04 (s) [6H] 1.25 (d)* [6H] 1.34 (d)* [6H] 1.67 (h)* [1H] 2.98 (h)* [1H] 3.31 (h)* [1H] 3.39 (br) [1H] 3.92 (br) [1H] 7.11–7.22 (br) [3H]	18.59 21.09 22.57 34.68 28.13 118.79–140.4 (4 Signale)	34.1	289/30 [162]	ν(OH) 3660 ν(NH) 3420	
v	$(CH_3)_2\overline{CB}$ $(CH_3)_2CHCB$ $(CH_3)_3\overline{C}$ $(CH_3)_2CHAr$ $(CH_3)_2CHAr$ $(CH_3)_2CHCB$ NH $(CH_3)_2CHAr$ $(CH_3)_2CHAr$ $(CH_3)_2CHAr$	0.69 (s) [6H] 0.84 (d)* [6H] 1.11 (s) [9H] 1.13 (d)* [6H] 1.20 (d)* [6H] 1.53 (h)* [1H] 2.82 (br) [1H] 3.51 (h)* [2H] 7.4 (br) [3H]	22.46, 27.0 18.16 32.72, 48.43 23.03 23.9 35.35 28.54 122.74–146.73 (4 Signale)	31.8	344/10 [203]	ν(NH) 3420	

TABELLE 1 (Fortsetzung)

Ver- bin- dung	NMR (δ in ppm) (* $^3J(H-H)$ 7 Hz)				MS m/z	IR
	Zuordnung	¹ H	¹³ C	¹¹ B	M ⁺ /Int. [Basispeak]	v (cm ⁻¹)
VI	(CH ₃) ₂ CB	0.69 (s) [6H]	22.40	32.0	345/10 [204]	
	$(CH_3)_2$ CHB	0.83 (d)* [6H]	18.61			
	$(CH_3)_2$ CHAr	1.14 (d)* [6H]	23.36			
	$(CH_3)_3\overline{\mathbb{C}}$	1.17 (s) [9H]	31.39, 72.7			
	$(CH_3)_2$ CHAr	1.19 (d)* [6H]	23.44			
	$(CH_3)_2CHCB$	1.68 (h)* [1H]	35.16			
	(CH ₃) ₂ CHAr	3.43(h)* [2H]				
	C_6H_3	7.1 (br) [3H]	122.76-146.02			
			(4 Signale)			
VII	(<i>CH</i> ₃) ₃ Si	0.18 (s) [9H]	2.72	36.5	386/0.8 [201]	
	$(CH_3)_2$ CB	0.64 (s) [6H]	21.01		,	$\nu_{as}(N_3) 2150$
	$(CH_3)_2$ CHCB	0.90 (d)* [6H]	18.27			23 (3/
	$(CH_3)_2$ CHAr	1.19 (d)* [6H]	24.93			
	$(CH_3)_2$ CHAr	1.29 (d)* [6H]	25.49			
	$(CH_3)_2CHCB$	2.04 (h) [1H]	34.42			
	(CH ₃) ₂ CHAr	3.23 (h) [2H]	27.76			
	C_6H_3	7.1 (br) [3H]	124.03-145.02			
			(4 Signale)			

 $a \delta(^{14}N).$

Die starke sterische Hinderung kommt bei der Reaktion mit Me₃SiN₃ dadurch zum Ausdruck, dass kein Ringschluss zum Tetrazaborolinderivat erfolgt, sondern die N₃-Gruppe unverändert bleibt [3].

Diskussion der Spektren

In den EI-Massenspektren (70 eV) findet man bei II-VII den Molekülpeak zum Teil mit überraschend hoher Intensität (s. Tabelle 1). Nur bei I tritt selbst im Feldionisationsspektrum (FI) lediglich $[M-C_3H_7]^+$ auf.

Die ¹¹B-NMR-Spektren zeigen die Signale weitgehend im Erwartungsbereich [12]. Für das Iminoboran III liegt $\delta(^{11}B)$ mit 14.9 ppm bei deutlich niedrigerem Feld als im Me₃CB=NCMe₃ [5] ($\delta(^{11}B)$ 2.4 ppm), im Me₃C(Me₃Si)N=BCMe₃ [6] und im TMP-B=NCMe₃ [4] beide mit $\delta(^{11}B)$ 4.1 ppm, jedoch bei höherem Feld im Vergleich zu [(Me₃)₃Si]₃XB=NSiMe₃ (X = C, Si) [9] ($\delta(^{11}B) \sim 21.5$ ppm). Betrachtet man daneben den Gang der ($^{11}B=N$) Valenz-Schwingung im IR, zeigt sich eine gewisse Übereinstimmung. d.h. Verbindungen, in denen $\delta(^{11}B)$ bei niedrigem Feld erscheint, haben offenbar eine geringere (BN) Kraftkonstante, als jene mit ¹¹B-Signalen bei höherem Feld: $\nu(^{11}BN) \sim 2020$ [5]; 1990 [4]; 1995 (diese Arbeit); 2000–1980 [6] und ~ 1880 [9] cm⁻¹. Dabei muss man wohl neben den rein sterischen Aspekten auch die elektronischen Einflüsse der weiteren B-N-Bindung im Aminoiminoboranderivat von [4] und [6] und der Si-N-Bindung in den Verbindungen, die von [9] beschrieben sind, mit berücksichtigen. Ein Zusammenhang zwischen der Elektronendichte am Bor, die in den Iminoboranen (sp-Hybrid) im

TABELLE 2	
PRÄPARATIVE UND ANALYTISCHE DATEN I	DER VERBINDUNGEN I-VII (* = Bad-Temp.)

Ver- bin- dung	Sdp. (a) oder SublPkt. (b) (°C/Pa)	Schmp. (°C)	Bruttoformel (MolMasse)	Analytisc	Ausbeute		
				C	Н	N	(%)
I	39/600 (a)		C ₆ H ₁₃ BBr ₂ (255.79)	29.48 (28.17)	5.17 (5.12)		64
II	118/7 (a)		C ₁₈ H ₃₁ BBrN (352.17)	60.96 (61.39)	9.03 (8.87)		89
Ш	93/7 (a)	62	C ₁₈ H ₃₀ BN (271.26)	79. 4 0 (79.70)	11.13 (11.15)	5.02 (5.16)	21
IV	110/1* (b)	80	C ₁₈ H ₃₂ BNO (289.27)	74.54 (74.74)	11.15 (11.35)		85
v	140/1* (b)		$C_{22}H_{41}BN_2$ (344.40)				76
VI	140/1* (a)		C ₂₂ H ₄₀ BNO (345.38)	77.20 (76.51)	11.67 (12.21)		61
VII	140/1* (b)	121	C ₂₁ H ₃₉ BN ₄ Si (386.41)	65.07 (65.27)	10.67 (10.17)	14.3 (14.5)	63

Vergleich zu den Aminoboranen (sp^2 -Hybrid) aufgrund der chemischen Verschiebungen stark erhöht zu sein scheint, und der Bindungsordnung ist ja a priori für die lineare Bindungsanordnung zu erwarten. $\delta(^{14}N)$ liegt in III mit -266.8 ppm in guter Übereinstimmung mit den von [5] und [9] angegebenen Daten.

Bei den Protonenspektren zeigt sich in den Verbindungen II, IV, V, VI und VII eine Aufspaltung der Signale der Methylgruppen der Aromaten-ständigen Isopropylreste durch Rotationshinderung.

In den ¹³C-NMR-Spektren, die bei Raumtemperatur registriert wurden, sind teilweise die Signale der an den Quadrupolkern Bor gebundenen C-Atome nicht auszunehmen.

Tabelle 1 fasst die spektroskopischen Daten, Tab. 2 präparative und analytische Angaben der Verbindungen I-VII zusammen.

Beschreibung der Versuche

Analysen und spektroskopische Messungen

C, H-Bestimmungen wurden teils vom Mikroanalytischen Laboratorium Beller (Göttingen), teils im analytischen Laboratorium des Institutes für Anorganische Chemie ausgeführt. NMR-Spektren: 10% Lösungen in CDCl₃ bzw. C₆D₆/CH₂Cl₂. Standards: Für ¹H und ¹³C: TMS intern; für ¹¹B: BF₃·OEt₂ extern; für ¹⁴N: MeNO₂ extern. Bruker-Spektrometer WP 80 SY (¹H, ¹¹B), AM 250 (¹³C, ¹⁴N). Die Massenspektren EI (bei 70 eV) und FI wurden auf einem Varian-MAT CH 5-Spektrometer registriert.

Alle Versuche wurden unter trockenem Stickstoff in getrockneten Lösungsmitteln ausgeführt.

Dibromthexylboran (I). Unter Anlehnung an eine von [13] gegebene Vorschrift für n- $C_6H_{13}BBr_2$ wurde folgendermassen verfahren: Zur Lösung von 125 g (0.4 mol) $BBr_3 \cdot SMe_2$ in 1 l CH_2Cl_2 wurden bei 20°C 0.2 mol $BH_3 \cdot SMe_2$ in 80 ml CH_2Cl_2 getropft und noch 2 h weitergerührt. Dann wurden 150.3 g (0.6 mol) BBr_3 in 250 ml CH_2Cl_2 zugetropft und nach einer weiteren Stunde Rühren 50.4 g (0.6 mol) 2,3-Dimethyl-2-buten eingetropft. Das Reaktionsgemisch wurde 4 h im Ultraschallbad beschallt, das Lösungsmittel abdestilliert und die farblose Flüssigkeit bei vermindertem Druck über eine Vigreux-Kolonne destilliert (Ausbeute 98.6 g an I). Den Destillationsrückstand – im wesentlichen $BBr_3 \cdot SMe_2$ – kann man erneut einsetzen.

Brom-(2,6-diisopropylphenylamino)thexylboran (II). Zu einem Gemisch von 28.8 g (0.163 mol) 2,6-Diisopropylanilin und 16.46 g (0.163 mol) Triethylamin, gelöst in 400 ml Hexan, wurden 41.68 g (0.163 mol) I in 100 ml Hexan bei 0°C unter Rühren getropft. Nach 3 Tagen Rühren bei 20°C wurde Et₃NHBr auf der Drucknutsche abfiltriert, mit Hexan nachgewaschen, das Lösungsmittel abdestilliert und über eine Vigreux-Kolonne destilliert. Es fielen 51 g II als farblose Flüssigkeit an.

2,6-Diisopropylphenylimino-thexylboran (III). Zu 23.12 g (0.164 mol) 2,2,6,6-Tetramethylpiperidin (TMP) in 100 ml siedendem Hexan wurden 0.142 mol n-BuLi in Hexan getropft. Nach 3 h Kochen am Rückfluss wurde die Lösung unter Rühren zu 49.22 g (0.142 mol) II in 200 ml Hexan getropft. Nach Rühren über Nacht wurde 4 h am Rückfluss gekocht, das Hexan unter verminderten Druck abdestilliert und – ohne zu fraktionieren – im Hochvakuum destilliert. TMP wurde in einer Kühlfalle zurückgewonnen. Das Rohprodukt wurde über eine 20 cm Vigreux-Kolonne destilliert, wobei es in farblosen Kristallen im Kühler erstarrte (Ausbeute: 8.2 g).

Hydroxy-2,6-diisopropylphenylamino-thexylboran (IV). Zur Lösung von 0.6 g (0.0021 mol) III in 10 ml CH₂Cl₂ wurden 0.04 g (0.0021 mol) H₂O gegeben, 3 Tage bei 20°C gerührt, das CH₂Cl₂ unter vermindertem Druck abgezogen. Sublimation im Hochvakuum lieferte 0.54 g an festem, farblosen IV.

t-Butylamino-2,6-diisopropylphenylamino-thexylboran (V), t-Butoxy-2,6-diisopropylphenylamino-thexylboran (VI) und Azido-[2,6-diisopropylphenyl(trimethylsilyl)amino]-thexylboran (VII).

Allgemeines Verfahren. Zu III, gelöst in 20 ml CH₂Cl₂, tropft man den Reaktionspartner, ebenfalls in 30 ml CH₂Cl₂, bei 20°C zu, rührt über Nacht und erhitzt dann 8 h am Rückfluss. CH₂Cl₂ wird unter vermindertem Druck abgezogen und der Rückstand im Hochvakuum (3-Kugelrohr bzw. Molekularsublimator) destilliert bzw. sublimiert.

V: Ansatz: 0.7 g (0.0026 mol) III, 0.19 g (0.0026 mol) Me₃CNH₂. Farbloses Öl. Ausbeute 0.68 g.

VI: Ansatz: 1.3 g (0.0048 mol) III, 0.36 g (0.0048 mol) Me₃COH. Farbloses Öl. Ausbeute 1.0 g.

VII: Ansatz: 0.78 g (0.0029 mol) III, 0.33 g (0.0029 mol) Me₃SiN₃. Farbloser Feststoff. Ausbeute 0.7 g.

Dank

Für die Förderung dieser Arbeit danken wir dem Fonds der Chemischen Industrie.

Literatur

- 1 P.I. Paetzold und W.M. Simson, Angew. Chem., 79 (1967) 825.
- 2 P. Paetzold, A. Richter, Th. Thijssen und St. Würtemberg, Chem. Ber., 112 (1979) 3811.
- 3 P. Paetzold und Ch. v. Plotho, Chem. Ber., 115 (1982) 2819.
- 4 H. Nöth und S. Weber, Z. Naturforsch. B, 38 (1983) 1460.
- 5 P. Paetzold, Ch. v. Plotho, G. Schmid, R. Boese, B. Schrader, D. Bougeard, U. Pfeiffer, R. Gleiter und W. Schäfer, Chem. Ber., 117 (1984) 1089.
- 6 P. Paetzold, E. Schröder, G. Schmid und R. Boese, Chem. Ber., 118 (1985) 3205.
- 7 H.-A. Steuer, A. Meller und G. Elter, J. Organomet. Chem., 295 (1985) 1.
- 8 P. Paetzold, Ch. v. Plotho, G. Schmid und R. Boese, Z. Naturforsch. B, 39 (1984) 1069.
- 9 M. Haase und U. Klingebiel, Angew. Chem., 97 (1985) 335.
- 10 P. Paetzold, Ch. v. Plotho, H. Schwan und H.-U. Meier, Z. Naturforsch. B, 39 (1984) 610.
- 11 A. Brandl und H. Nöth, Chem. Ber., 118 (1985) 3759.
- 12 H. Nöth und B. Wrackmeyer, Nuclear Magnetic Resonance Spectroscopy of Boron Compounds, Berlin-Heidelberg-New York, 1978.
- 13 H.C. Brown und N. Ravindran, J. Am. Chem. Soc., 99 (1977) 7097.